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Abstract: Land cover modeling is used to inform land management, but most often via a two-step 

process where science informs how management alternatives can influence resources and then decision 

makers can use this to make decisions.   A more efficient process is to directly integrate science and 

decision making, where science allows us to learn to better accomplish management objectives and is 

developed to address specific decisions.  Co-development of management and science is especially 

productive when decisions are complicated by multiple objectives and impeded by uncertainty.  
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Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed 

through targeted science (i.e., models and monitoring).  We describe how to integrate habitat and fuels 

monitoring with decision making focused on dual objectives of managing for endangered species and 

minimizing catastrophic fire risk.  Under certain conditions, both objectives might be achieved by a 

similar management policy, but habitat trajectories suggest tradeoffs.  Knowledge about system 

responses to actions can be informed by applying competing management actions to different land 

units in the same system state and by ideas about fire behavior.  Monitoring and management 

integration is important to optimize state-specific management decisions and increase knowledge about 

system responses.  We believe this approach has broad utility for and cover modeling programs 

intended to inform decision making.   

Keywords: adaptive management; fire management; Florida scrub-jays; structured 

decision making; state transitions; landcover modeling 

1. Introduction 

Landcover modeling is becoming increasingly important to inform natural resource management [1,2].  

A common approach is for scientists either to develop landcover maps corresponding to snapshots in 

time or to actually model landcover dynamics in a manner that permits projection of future landcover 

patterns. In either case, scientists conduct these studies that have potential to inform land management 

and then provide these results and findings to decision makers, who choose whether and how to use the 

information.  This 2-step process is inefficient, at best, providing little opportunity for real interaction 

between scientists and decision makers and frequently leading to the dissatisfaction of both groups. 

Decision makers often complain of scientific results that, although somewhat relevant, do not fill the 

critical information needs of the decision process. Scientists frequently complain that decision makers 

do not pay adequate attention to the scientific information that they provide. Adaptive resource 

management (ARM) [3,4] provides an alternative approach to management that better integrates 

science into the decision making process [5]. Adaptive management was developed as an approach to 

making recurrent decisions that are characterized by potentially resolvable uncertainty.  Adaptive 

management essentially embeds science within a broader management process, providing an 

opportunity to learn about system responses to management actions and a clear path to use what is 

learned to make better decisions. Hypotheses are compared and tested under ARM, but the hypotheses 

are precisely those most relevant to management, and test results are directly used in subsequent 

decisions.    

We have been involved with one ARM project in which landcover modeling plays an important role, 

but believe that there are many more opportunities for the integration of landcover modeling and 

ARM. Virtually all land management programs that take actions to modify habitat and landcover 

require model-based projections of landcover changes expected to accompany such actions [6]. Even 

for management actions that are not directed at modifying habitat, landcover dynamics are frequently 

relevant to system responses to management and hence to management programs [7]. This relevance is 

especially true as rapid global change associated with increasing human populations, climate change, 

etc., results in substantial alterations in landcover patterns and dynamics.  For these reasons we expect 

landcover modeling to become increasingly important to ARM programs directed at a variety of 

different conservation problems.    
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The current program in which landcover modeling supports ARM is based on managing habitat to 

assist in the recovery of the Florida scrub-jay (FSJ) Aphelocoma coerulescens, an endangered bird that 

resides in scrub ecosystems adapted to frequent fire but that has been subjected to substantial habitat 

loss, fragmentation, and degradation.   In our approach, landcover is characterized by discrete 

successional stages that represent habitat quality, as defined by a geographic scale (10 ha) representing 

average territory size and therefore relevant to FSJ recruitment and survival (Table 1).   

Table 1.  Habitat states used to quantify landscape units as potential territories (10 ha) of FSJs directly 

related to long –term demographic performance (yearling production rates – breeder mortality rates) 

and fire history successional patterns (adapted from [8-10]. Populations are expected to increase in 

landscapes dominated by source territories (positive demographic performance) or decrease in 

landscapes dominated by sink territories (negative demographic performance).  

State Characteristics Demographic 

performance 

Short Oak <1.2 m tall & recent fires (<4 years ago) that 

completely burned territories 

-0.32 

Open-medium Medium-height (1.2-1.7 m) oak >0.4 ha often as a 

mosaic amongst short but no tall patches (>1.7 m) 

> 0.4 ha, no openings 

0.49 

Open-closed Medium-height (1.2-1.7 m) oak >0.4 ha often as a 

mosaic amongst short but no tall patches (>1.7 m) 

> 0.4 ha openings 

0.15 

Tall mix Mosaic of short or medium patches 

amongst tall oak  > 0.4 ha 

-0.24 

Tall All scrub >1.7 m tall and unburned >20 years -0.31 

 

The highest quality habitat (open-medium) for FSJ is a transitional state and, therefore, recovering the 

species requires imposing a disturbance regime using prescribed fires, which are necessary because 

habitat fragmentation restricts spread of natural fires across landscapes and society generally requires 

that wildfires be suppressed [10,11]. Because optimal habitat conditions for FSJ are generally those 

needed by other scrub-adapted species, the species is considered a management indicator species  [12].   

The need to apply decision theory to balance conflicts between protected species conservation and fire 

management to protect human interests is well-established on many continents [13].  Funding for 

conducting prescribed fires is often specified for fuels management and not necessarily for species 

habitat management; administrators from agencies often measure performance of prescribed fire 

programs using the acreage burned each year, which provides little information on habitat quality 

trajectories because fire intensity and outcomes are heterogeneous [10].  Our studies have shown that 

an emphasis on fuels management will not achieve species conservation goals on many conservation 

lands [14].  Wildland fire managers and ecologists agree that prescribed fires are beneficial, and we 
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believe that differences in management approaches are reconcilable, but require stakeholders to 

acknowledge multiple values and agree (1) on the legitimacy of objectives arising from these values, 

(2) on how to measure whether management is attaining those objectives, and (3) on how resources 

should be optimized.   

Our objectives here are to describe approaches that can be used to integrate both fuels and habitat 

management, specific to the Florida scrub system.  We provide examples of approaches to perform this 

integration of science and management because we believe that it is broadly applicable to other fire 

risk and endangered species applications worldwide. Landcover modeling and landcover monitoring, 

endeavors that are sometimes viewed as stand-alone activities, are given important and explicit roles in 

this integrated process.  Here, we take a general approach to integrating landcover and ecological 

sciences with natural resource management because implementing a specific ARM would consider a 

broader group of stakeholders who are particularly important in defining objectives.  

There are a large number of studies associated with fuels management that focus on risk assessment 

and associated uncertainties in decision making [15-17]. Strategies have been attempted to balance 

fuels and species management recognizing that there are potential conflicts [18-21].  Our approach 

differs from these other, two-step efforts by that fact that we explicitly integrate management 

objectives, available actions, predictive modeling and learning in a transparent way to recommend 

conditionally optimal decisions.   

2. Management of Florida Scrub: Fuels management vs. Ecological benefit 

Landcover studies have shown that Florida ecosystems have been severely degraded by a reduction in 

fire frequency due to wildfire suppression and because human landscape features (cities, highways, 

etc.) minimize the spread of natural lightning fires across landscapes [11,22].  This degradation has 

resulted in catastrophic impacts to biological diversity; fire managers and ecologists agree that 

introducing fire back into the system is a priority [23]. Prescribed fires differ from wildfires because of 

their size, spatial pattern, season, and differences in weather when these events occur [24].  One reason 

that prescribed fires often have limited ecological benefit is that fire managers often burn out the 

flammable parts of a burn unit in order that patches are less likely to reignite, ignite unburned fuels in 

surrounding management units, or produce smoke and other hazards.  The success of prescribed fire 

programs is often measured as the annual burn acreage rather by remaining fuel levels or the 

ecological value of the fires.  Extensive fires that produce a large proportion of short territories (Table 

1) result in poor FSJ survival and repeated extensive fires can result in catastrophic population declines 

[8].  Scrub management guidelines, focused on biological diversity, specify mosaic fires that produce 

mostly open-medium territories [12].  The second reason prescribed fires alone have limited success is 

that long unburned scrub generally does not burn without mechanical cutting, an expensive 

management option [25].  Because scrub regrowth is often a function of underground biomass, many 

ecologists have observed that scrub that is long unburned recovers much faster than scrub that has been 

subjected to more frequent fire.  Thus, fire history may be an important component to include in 

landcover models, but has not received much attention in the literature [9,26].  

Fire managers usually rely on a return interval to determine when a managed area needs to burn, which 

differs from our previous ARM modeling that recommends using time-specific state variables (e.g., 

habitat states from Table 1) to determine the optimal management action.  This approach has resulted 
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in recommendations for a much more frequent fire return interval than has been customary [14].  Many 

ecologists agree that burning more frequently might hasten returning the system to a more desired 

ecological state, but this would require significant management effort and willingness to value mosaic 

fires for ecological benefit.   Fire managers recognize that mosaic fires are difficult to achieve and 

observe that burning early in the vegetation recovery cycle often achieves less reduction in fuels than 

waiting until fuels become mature and more continuous.  Although mosaic fires may increase the risk 

of flare-ups and smoke, burning early might reduce the threat of wild fires between prescribed fires. 

Many fire managers hold the view that the habitat states used to describe FSJ habitat are largely 

reflective of fuels loads and continuities, although this topic represents an area needing more research.  

Landscapes dominated by short and open-medium territories have relatively low fuels and high fuel 

discontinuities, whereas as landscape dominated by closed-medium and tall mix have high fuels 

loading and possibly high fuels continuities.  Burning earlier requires fire managers to recognize that 

actions to further ecological objectives may also be of value to fuels management - e.g., fires that only 

burn small extents create open sandy areas interspersed with oak scrub which promote both valuable 

ecological objectives and possibly minimize the risk of more extensive fires in the future [10].  We 

argue that objectives and measurement of the efficacy of management should be based on the risk of 

fuels present on landscapes, rather than the total acreage burned.  Because fire risks to humans are 

difficult to measure and specify, fuels are generally used as surrogates and we chose to focus our 

efforts here on habitat and fuels states recognizing that stakeholders will collaboratively define the 

objective function to describe the trade-offs of fuel risks and habitat benefits.  

3. Adaptive resource management 

ARM has come to be defined and viewed in many different ways, so we begin with a brief description 

of our specific view of this process. As noted above, we view ARM as a process for making informed 

decisions for recurrent management problems characterized by potentially resolvable uncertainty. 

ARM requires the following components essential to any informed decision process [27-29]:  clearly 

specified objectives, a set of potential management actions, models for projecting system response to 

actions, monitoring for estimating the state of the system and other relevant parameters, and a decision 

algorithm that uses these components to select the appropriate decision.  The establishment of an ARM 

program begins with a deliberative or setup phase during which the listed components are developed 

and assembled. Objectives drive the entire process and must be developed in a manner that engages, 

and obtains input from, all relevant stakeholders. Development of the set of potential actions is based 

on the specified objectives and again typically requires input from relevant stakeholders. Based on 

specified objectives and actions, models are developed to predict consequences of potential actions to 

the managed system. Because substantial uncertainty frequently characterizes predictive modeling, it is 

often necessary to develop multiple models in order to include all of the uncertainty about system 

response to actions.  Relative degrees of confidence in the different models are reflected by model 

“weights”, numbers that sum to 1 for all the members of the model set. A monitoring program is then 

established for the specific purpose of informing the decision process, and a decision algorithm is 

selected in order to translate information from all of these process components into a recommended 

decision. The decision algorithm can be very formal, as with a dynamic optimization algorithm [30-

32].    

This deliberative phase is then followed by actual implementation of ARM in an iterative phase. At 

each decision point, the decision algorithm is used to select the appropriate action based on the 
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objectives, available actions, models, and current estimates of system state (from the monitoring 

program). The selected action is implemented and drives the system to a new state, which is identified 

by the monitoring program. In the typical case of multiple models, the estimated system state is 

compared with the predictions made by each of the system models. Model weights are increased for 

models that predicted well and decreased for models that predicted poorly, using Bayes’ theorem (e.g., 

[31]. At the next decision point, armed with these new model weights and the new estimate of system 

state, the decision algorithm is again used with the existing objectives, actions and models to select the 

next action.  The iterative process proceeds in this manner with model weights and estimates of system 

state changing from one decision point to the next. Learning is accomplished by the comparison of 

model predictions with estimated system state at each time step, and is reflected in the updating of 

model weights. Because the model weights determine the relative influence of the different models in 

the decision algorithm, the learning is incorporated directly into each decision.  Note that this step of 

evolving degrees of confidence in different models based on a comparison of predictions against 

observations (i.e., an estimate of the true system response) effectively incorporates science within the 

larger management process.     

The iterative phase proceeds in this manner, simultaneously promoting both wise management and 

learning for better management in the future.  However, at any time during the iterative phase it is 

possible to revisit any of the ARM components, effectively returning to the deliberative phase. 

Stakeholder objectives may change, ineffectiveness of management actions may motivate a search for 

new actions, system response may not be predicted well by any members of the model set, or 

monitoring may be ineffective at estimating relevant quantities.  Returns to the deliberative phase after 

obtaining experience with the ARM process are referred to as double-loop learning [33,34].  Any 

changes made to process components during this double-loop deliberative phase are then incorporated 

into ARM for the next round of iterative phase decisions. Finally, we reiterate that adaptive 

management is viewed in different ways by many managers and scientists. Our purpose in laying out 

our view of this process is not to suggest to readers that this view is in any sense the only “correct” 

perspective, but rather to insure that the reader has a clear idea of what we mean by ARM.     

4. Defining objective functions 

For any informed decision, the decision maker and stakeholders are required to formulate the problem 

with clearly defined and quantifiable management objectives.  In decision theory, objectives are 

representative statements about how we value the outcomes of alternative management actions.  An 

objective function is the formalized, mathematical expression of such statements, translated into 

measurable management goals, and can be written to capture multiple (possibly competing) benefits as 

well as conditional constraints and management costs.  By quantifying the costs and benefits (the 

‘return’) expected to result from implementing a management policy, the objective function serves as 

the basis for an optimization or tradeoff analysis [31,35].  A common formulation of conservation 

objectives is the maximal coverage problem, where the goal is to find the solution that achieves the 

greatest return given budget (or personnel) constraints [36,37].  If the management problem has 

multiple-objectives, we would define the system state (e.g., of a habitat patch) based on variables that 

represent each objective.  We could then assign a management return to that state variable reflecting its 

benefit to each objective.  For example, a habitat patch may be observed as being of high quality for 

FSJ, but of moderate risk for wildfire.  These components would define a single system state for the 

patch (high/moderate), and we assign a value to each component and sum values to produce the 
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management return for that patch.  There are many ways to assign management values to system 

states, including utility functions that describe the relationship between state variables and benefits or 

values can be assigned directly to each level of the state variable (e.g., high (FSJ) = 1, moderate (fuel) 

= 0.5) which could reflect both the level of the variable and an implicit weighting of objectives.   A 

generalized objective function for a multiple objective problem is 

    ∑∑ 

 

(         )      

 

 

given that              (1) 

∑ ( )   

 

       

where  (         ) is a function that identifies the management return for objective j at site i, conditional 

on being in system state x after implementing action a.  The cost of implementing action a at site i is 

c(a)i and B is the total resources (dollars, staff hours) available for allocation.    The utility function f 

can take on a number of functional forms (e.g., linear, convex/concave, step, etc.) to describe state-

dependent management values or can simply be used to assign a return to each possible state of the 

system.     

The objectives of the National Fire Plan, followed by the U.S. Fish and Wildlife Service, are to reduce 

the risk of catastrophic wildfire by reducing hazardous fuel loads (especially near communities), 

restore fire-adapted ecosystems and reduce suppression costs.  The Fire Plan includes implicit 

recognition of a state-dependent Markov process by specifying that decisions will be based on 

objectives to minimize fuel hazard by maximizing the probability of system state transitioning from 

high to low risk, while minimizing the probability of the system transitioning from low to high risk.   

The objectives of habitat management for FSJ recovery can be specified in multiple ways, and we 

present 2 examples. Johnson et al. [14] describe an adaptive management program in which FSJ 

population growth rate is modeled as a function of scrub-height classes (Table 1). The management 

objective is to maximize population growth rates by implementing habitat treatments at the 

management-unit level and the utility function increases linearly with growth rate.  A related scrub 

habitat management program in mainland Florida has chosen territory occupancy of FSJ as an 

appropriate state variable (  is the probability that a local site is occupied). Probabilities of a site 

transitioning between occupancy states are functions of scrub-height class, soil substrate and the 

presence of FSJ in neighboring territories.  The management objective under this program is to 

maximize the number of occupied territories within each management unit, with a sigmoidal utility 

function to represent a species recovery goal of 0.70 occupancy in a given conservation reserve (Eaton 

et al., unpublished). In both cases, the goal of the analysis was to produce unconstrained optimal 

decisions, so neither cost nor other objectives such as fuel load were included in the objective function.  

However, cost constraints were recognized as an important consideration for future iterations of the 

decision model. 

Neither of the existing approaches explicitly considers fuels management, focusing instead on 

objectives that concern FSJ status. To account for the distinctions in objectives between fuel hazard 

and habitat-species management, we believe there would be considerable benefit to development of an 
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objective function that integrates the goals of both resource management programs.  One approach to 

developing an objective function that incorporates 2 components is similar to the maximal coverage 

problem, where we would optimize the return for one component of the system state (i.e., one of the 

variables used to classify patches to state), conditional on achieving a minimum level (a constraint) for 

a second system state variable. For example, we could produce a policy to minimize the number of 

territories in a management unit that contains fuels biomass in a high-risk state, conditional on 

achieving a minimum occupancy level of 0.70.   

   ∑  (               )          

 

 

 

given that                 (2) 

∑   
 
 

 
                  

where N is the count of territories. The objective function could also be written to maximize FSJ 

occupancy subject to the constraint of maintaining fuel load below some threshold level.  

Alternatively, we could address the problem by maximizing the total return for each objective (fuels 

reduction, FSJ), subject to a budget constraint (as in Eq. 1).  If we value one objective more than 

another, we can reflect this either by assigning relative values to each component of the system state 

(e.g., if fuels management is of higher priority, a larger value can be assigned for low fire risk relative 

to the value of high quality FSJ habitat) or by appropriately weighting the return for each variable 

summed across all sites.  A third option is to evaluate the return on management actions for each 

objective separately and seek a Pareto-efficient solution [38,39].  Pareto optimality identifies a multi-

dimensional efficient frontier of possible solutions in which improvement in one component of 

objectives cannot occur without a loss to another.  This efficiency frontier would represent an optimal 

range of trade-offs between (un-weighted) habitat and fuels management objectives for which a 

negotiated solution based on managers’ values could then be reached. 

5. Management actions 

Decision analysis in general, and ARM in particular, entail selection of one element of a finite (often 

small) number of potential management actions. The set of possible actions usually includes “do 

nothing” as well as possible actions selected for their potential to move the system in a direction 

consistent with program objectives. In the specific case of scrub management, the action set might 

include “do nothing’, “burn”, and “chop”.  Optimal FSJ habitat needed for population recovery 

requires open sandy areas exposing mineral soil adjacent to medium height scrub that has often not 

burned in 10 years [10].  The open sandy areas are often less than 2 years post-fire so that optimal 

habitat often results from a mosaic of age classes.  Ecologists ask managers to use mosaic fires when 

scrub-jays are present, implying that two types of fire could be conducted depending on system state: 

extensive or mosaic.  Fire managers are often reluctant to distinguish these types of fire because 

desired results are difficult to achieve, but many managers are amenable to not reigniting patches that 

do not burn unless unburned areas are immediately adjacent to highways or management unit 

boundaries. With this distinction of fire types in mind, the action set might expand to include “do 

nothing”, “burn (mosaic)”, burn (extensive)”and “chop”.    
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6. Models  

When land cover states can be classified in terms that represent progress towards or away from 

something we hope to achieve, estimates of land cover transition probabilities under differing 

management regimes can be used to guide optimal decision making for realizing positive impacts on 

resources, processes and ecosystem services [14]. Most habitats are subject to natural succession 

dynamics, and the application of a management action is intended, by definition, to transition land 

cover states in an intended direction, although often with considerable uncertainty.  Therefore, land 

cover change can be effectively described using discrete-time, first-order Markov models, 

characterized as random processes in which the system state at any point in time depends only on the 

state in the previous time step. A vector of probabilities describes the transition from a single known 

state in time t to any of a finite number of other states in time t+1.  Because the state space (X) for a 

Markov model is discrete and comprehensive, we constrain these probabilities as 

∑ r(      |       )   

 

   

           

where the transition probabilities at time t are conditional not only on the state at time t, but also on the 

management action a selected at that time. Although some management actions can produce 

deterministic outcomes (i.e., the vector of transition probabilities comprises all zeroes except for one 

state with a value of 1), it is more common that management actions result in probabilistic outcomes 

due to partial controllability of the action achieving its intended result, variation in environmental 

conditions under which the action is implemented or averaging across unmodeled variation in the 

conditions of the managed sites.   

Essential considerations when modelling land cover change in this way include 1) defining the 

possible states of the system in terms that are appropriate to the management context, 2) matching the 

time step of state transition probabilities to the management cycle and, 3) specifying a transition matrix 

for each action available to managers.  With regard to the first consideration, habitat state selection, for 

example, should encompass characteristics or quantities that represent different values that we might 

assign to management outcomes.  Choice of habitat states must also take into account the spatial scale 

at which actions are applied and practicalities of identifying the system state at any point in time with 

minimal error (i.e., via monitoring), both of which permit state-dependent decision making.  In the 

case of scrub management, one way to define the system state is as a combination of discrete states 

corresponding to the demographic performance of the FSJ (Table 1).  The spatial scale at which we 

describe habitat state is that at which burn decisions are implemented, the fire management unit 

(FMU), and the time step of the state transition estimates is the annual decision cycle used by land 

managers.   With the additional objective of managing habitat for fuels reduction, we expect that it 

could be necessary to modify how habitat state is defined (see above, Defining objective functions).  

We might instead characterize the state space as a combination of vegetation structure and discrete 

categories of fuels biomass, biomass connectivity (i.e., ability to carry a fire) or adjacency to another 

site with high fuels biomass (i.e., as a measure of risk).    

Finally, individual transition probabilities must be specified for all system states and for all possible 

management actions from which the decision maker is able to select.  When novel management actions 

are being considered, these probabilities must be elicited as best estimates from experts [40,41].  When 
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land cover history data exist, state-action transition probabilities can be estimated empirically using a 

variety of techniques including binomial or multinomial logit models implemented using Bayesian 

MCMC methods (e.g., using Dirichlet priors; [42]) or maximum-likelihood approaches ([9,43]). If the 

history of system state and management action is known for each managed site over time, modeling 

individual site histories (e.g., land cover state at each time step) using maximum-likelihood methods is 

an efficient way to estimate transition parameters as a function of management actions and site 

conditions.   The resulting transition parameters will be in the form of a matrices of X by X dimension, 

where a is the number of available management actions and X is the number of landcover states.  For 

example, a system that can be described using five relevant habitat states and whose units are managed 

using either prescribed fire or cutting would require a model with 3, 5 x 5 transition matrices (a = 3 

actions, including a no-action alternative), for a total of 75 parameters.   Note that when landcover 

state histories are observed imperfectly (e.g., using remote sensing), methods to account for state 

misclassification have been developed ([42,44,45].  

7. Monitoring 

Monitoring programs provide data that play at least 4 important roles in management programs.  (1) 

Estimates of system state variables (e.g., the number of sites in the management unit in each habitat or 

habitat + fuel load state) are used to make state-dependent management decisions. (2) Estimates of 

state variables and other quantities related to objectives are used to assess progress towards 

management objectives. (3) Estimates of state variables and other parameters (e.g., model vital rates) 

can be compared against model-based predictions in order to discriminate among competing models. 

This comparison of empirical data against model-based predictions for the purpose of discriminating 

among competing hypotheses constitutes the key step in science. Thus, this role of monitoring entails 

the embedding of a scientific step in the larger management program. (4) Monitoring data are also used 

to obtain updated estimates of key model parameters used to predict system responses to management. 

As with other elements of the ARM program, the nature of the monitoring program is driven by the 

management context. If management focus is on sites characterized by habitat state and fuel load state, 

then a monitoring program would ideally provide estimates of habitat-fuel load state each year for all, 

or a subset, of sites that are in the management program.        

Landcover monitoring can be conducted either remotely (e.g., satellite imagery, aerial photography) or 

with actual visits to each monitored site.  One of the greatest challenges in landcover monitoring to 

support ARM is obtaining imagery to classify habitat states in a timely manner, for example where 

high resolution is necessary to detect small but important habitat features.  The states used herein are 

simple enough that they can be practically classified in the field each year in all but the largest 

conservation areas, which may need to rely on new technologies such as unmanned aerial systems 

[14].  We also use time series satellite imagery to maintain a fire history database and to map fire 

boundaries [24,46]. Such data are used to obtain estimates that populate the transition probability 

matrices described above. For example, we would like to estimate the probability that a burn was 

successful in moving a site from one habitat state to another as a function of the initial habitat state and 

environmental conditions [9].  

8. Decision Algorithm  
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The final component of an informed decision process is a decision algorithm that uses the other 

process components described above, objectives, actions, models and monitoring, to decide which 

action is most likely to produce returns that are “best” with respect to the specified objectives.  

Dynamic optimization methods are often used for solving sequential decision problems in natural 

resource management [47-49].  Sequential decision problems are ubiquitous in conservation; examples 

include the harvesting or stocking of animals, the control of invasive plants and animals, and habitat 

management for imperiled species [50,51]. 

Dynamic optimization methods combine objective functions that value present and future 

consequences of alternative management actions with models of ecological system change (see 

Objectives and Modeling sections, above).  The general resource management problem involves a 

temporal sequence of decisions, where the optimal action at each decision point depends on time 

and/or system state [49].  The goal of the manager is to develop a decision rule (or management 

policy) that prescribes management actions for each time and system state that are optimal with respect 

to the objective function.  A key advantage of dynamic optimization is its ability to produce a feedback 

policy specifying optimal decisions for possible future system states rather than expected future states 

[47].   In practice this makes optimization appropriate for systems that behave stochastically, absent 

any assumptions about the system remaining in an equilibrium state or about the production of a 

constant stream of resource returns.   

Similar to our organization of the preceding discussion, a framework for dynamic optimization 

requires specification of (1) an objective function for evaluating alternative management policies; (2) 

predictive models of system dynamics that are formulated using quantities relevant to the stated 

management objectives; (3) a finite set of alternative management actions, including any constraints on 

their use; and (4) a monitoring program to follow the system's evolution and responses to management.  

More formally, let 

         (        )      (3) 

characterize system dynamics, where    is a vectorized representation of system state at time   and    

and    represent management actions and environmental variation, respectively.  Environmental and 

other sources of variation induce Markovian transition probabilities  (    |     ).  Let policy    

specify an action for every system state    at every time in the time frame {        }.  Benefits and 

costs attend management actions, which are included in returns  (     ) that in turn are accumulated 

in an objective or value function: 

 (     )   {∑      (     )   
 
   }     (4) 

where the expectation is with respect to stochastic influences on the process and   discounts future 

returns.  This function can be decomposed into current returns and future values by: 

 (     )   (     )   ∑  (          )     (         )    (5) 

which makes clear that future values are conditioned on the effect of current actions on future states.  

A value  (     ) can be obtained for every possible policy    over the time frame, and the optimal 

policy satisfies [52,53]. 
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  (  )       { (  |  )   ∑  (    |     )      (    )} .  (6) 

A key consideration in dynamic optimization is the uncertainty attendant to management outcomes.  

This uncertainty may stem from environmental variation, errors in measurement and sampling of 

ecological systems (partial system observability), incomplete control of management actions (partial 

controllability), and incomplete knowledge of system behavior (structural or model uncertainty) 

(Williams et al. 1996).  Model uncertainty, an issue of particular importance in adaptive management, 

can be characterized by continuous or discrete probability distributions of model parameters, or by 

discrete distributions of alternative model forms that are hypothesized or estimated from historic data.  

Important advances have followed from the recognition that these probability distributions are not 

static, but evolve over time as new observations of system behaviors are accumulated from the 

management process.  Indeed, the defining characteristic of adaptive management is the attempt to 

account for the temporal dynamics of this uncertainty in making management decisions [3] [54] [55-

57]. State-dependent decisions produced by stochastic dynamic optimization are thus optimal with 

respect to the other decision process components and their associated uncertainties. 

9. Valuing Information 

The value of information has been an important concept in fields such as economics, medicine, and 

engineering, but there are few applications in natural resource management [58].  A useful tool for 

addressing questions about the nature and implications of uncertainty is the expected value of 

information [59].  In particular, the expected value of perfect information (EVPI) expresses the gain in 

the management performance if uncertainty were to be eliminated.  EVPI is simply the difference 

between the objective value expected if there were no uncertainty and the best that could be expected 

with values that are averaged over uncertain outcomes.  EVPI is often expressed in dollars, but any 

relevant performance metric will suffice.  Expressing EVPI in dollars is useful, however, for 

determining what managers should be willing to spend on monitoring and other data-collection 

programs designed to reduce the uncertainty. 

EVPI can be useful for the design and implementation of effective monitoring programs to support 

either state-dependent or adaptive management [60].  Even if a rigorous assessment of information 

value is not possible, the expected-value heuristic can be helpful for bringing clarity of thought and 

purpose to questions concerning monitoring design [61].  For example, because of the direct and 

opportunity costs of monitoring, some authors have begun to explore the optimal frequency of resource 

monitoring.  Here the notion of optimality concerns the ability of a monitoring program to provide 

information that will improve management performance in a demonstrable and cost-effective way [62-

64]. 

10. Landscape Resilience and Restoration 

Not everyone concerned with the conservation of natural resources agrees about the utility of decision 

analysis and optimization [65-67].   roponents of “resilience thinking” have been particularly critical 

[68].  Resilience is defined as the magnitude of disturbance a system can absorb while still retaining 

essentially the same function, structure, identity, and feedbacks [69] or as the disturbance that can be 

absorbed without shifting the system to an alternative stability regime (or “domain of attraction”) [70].  
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Important concerns for ecosystem management are: (1) the loss of resilience as the system state 

approaches a (perhaps unknown) threshold, and the attendant increase in probability that some 

disturbance will shift the system to a less desirable stability regime; and (2) changes in the parameters 

governing the size and shape of the domains of attraction that make system shifts more or less likely 

[71].  Systems with alternative stable states can also exhibit hysteresis, in which a loss of resilience is 

followed by a system change and thereafter with an increase in resilience so that reversing the change 

is difficult [72,73].   

In our example, scrub that has been subject to long periods of fire suppression exhibits hysteresis, and 

an optimal burning regime alone does not appear sufficient to return the system to its historic state 

[22].  Approaches to the conduct of dynamic optimization for systems whose dynamics are influenced 

by history and characterized by substantive time lags have been developed conceptually [28], but 

implementation can be challenging.  Although a number of researchers have begun to formulate 

models that can be used to explore properties of resilience [72-74], more needs to be done to develop 

models that can be used to provide practical advice for those concerned with ecosystem management.  

We believe that a useful approach will be to use the described methods of decision analysis, but to 

modify objectives (stressing outcomes that are robust) and models in a manner consistent with 

resilience ideas [75].             

11. Conclusions 

We proposed a general approach to how landcover modeling can be directly integrated with 

management decision making to support natural resource management programs where repetitive 

decisions are characterized by uncertainty that can be hopefully reduced by learning.  Under this 

approach, landcover modeling does not “inform” decisions in a vague, unspecified manner, but rather 

provides the predicted responses to management actions that form the basis for optimization. Similarly, 

learning, as evidenced by increased confidence in one or more particular models, leads directly to 

increased influence of such models in subsequent decisions.  Our application was specific to fire prone 

ecosystems managed by prescribed fire needed to reduce wild fire risk and manage habitat for species 

of conservation concern.  Our approach relies on stakeholders to forge agreements about objectives, 

management actions, monitoring, and their integration.  Landcover modeling provides predictions 

about the effects of specific management decisions or forcings (natural and man-made) using transition 

probabilities that can be updated by monitoring.  We believe this adaptive approach to management 

can be very useful in many applications, and that landcover modeling can be a key component of 

decision making. 
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